Stability and boundary stabilization of physical networks represented by 1-D hyperbolic balance laws

G. Bastin

Outline

Hyperbolic 2×2 systems of balance laws
Steady-state and characteristic form
Networks of balance laws
Boundary conditions
Exponential stability
Lyapunov stability analysis
Real-life application : hydraulic networks
Non uniform systems

Open channels, St Venant equations (187।)
$\partial_{t} h+\partial_{x}(h v)=0$
$\partial_{t} v+\partial_{x}\left(g h+\frac{1}{2} v^{2}\right)=g S-C v^{2} / h$
$h=$ water level, $v=$ water velocity,
$g=$ gravity, $S=$ canal slope, $C=$ friction coefficient

Road traffic, Aw-Rascle equations (2000)
$\partial_{t} \rho+\partial_{x}(\rho v)=0$
$\partial_{t}(v+p(\rho))+v \partial_{x}(v+p(\rho))=(V(\rho)-v) / \tau$
$\rho=$ traffic density, $v=$ traffic velocity, $p(\rho)=$ "traffic pressure",$V(\rho)=$ preferential velocity,
$\tau=$ time constant

Telegrapher equations , Heaviside (I892)

$$
\begin{aligned}
& \partial_{t}(L i)+\partial_{x} v=-R i, \\
& \partial_{t}(C v)+\partial_{x} i=-G v,
\end{aligned}
$$

$i=$ current intensity, $v=$ voltage, $L=$ line inductance, $C=$ capacitance, $R=$ line resistance, $G=$ dielectric admittance (per unit length).

Optical fibers : Raman amplifiers (1927)

$$
\begin{aligned}
& \partial_{t} S+\lambda_{s} \partial_{x} S=\lambda_{s}\left(-\alpha_{s} S+\beta_{s} S P\right), \\
& \partial_{t} P-\lambda_{p} \partial_{x} P=\lambda_{p}\left(-\alpha_{p} P-\beta_{p} S P\right),
\end{aligned}
$$

$S(t, x)=$ transmitted signal power, $P(t, x)=$ pump laser beam power, λ_{s} and $\lambda_{p}=$ propagation velocities, α_{s} and $\alpha_{p}=$ attenuation coefficients, β_{s} and $\beta_{p}=$ amplification gains

Euler isentropic equations (I757)
$\partial_{t} \rho+\partial_{x}(\rho v)=0$
$\partial_{t}(\rho v)+\partial_{x}\left(\rho v^{2}+P(\rho)\right)=-C \rho v|v|$
$\rho=$ gas density, $v=$ gas velocity,
$P=$ pressure, $C=$ friction coefficient

Fluid flow in elastic tubes (e.g. blood flow)
$\partial_{t} A+\partial_{x}(A V)=0$,
$\partial_{t}(A V)+\partial_{x}\left(\alpha A V^{2}+\kappa A^{2}\right)=-C V$
$A=$ tube cross-section, $V=$ fluid velocity,
$\alpha, \kappa, C=$ constant coefficients

Hyperbolic 2×2 systems of balance laws

Space $x \in[0, L]$
Time $t \in[0,+\infty)$
State

$$
\begin{aligned}
& \text { ate } \\
& Y(t, x) \triangleq\binom{y_{1}(t, x)}{y_{2}(t, x)}
\end{aligned}
$$

$\partial_{t} Y+\partial_{x} f(Y)=g(Y)$

$$
\partial_{t} Y+A(Y) \partial_{x} Y=g(Y)
$$

$A(Y)$ has 2 distinct real eigenvalues

$\underline{\text { Uniform steady state } \partial_{t} Y+A(Y) \partial_{x} Y=g(Y)}$

A steady-state is a constant solution $\quad Y(t, x) \equiv \bar{Y}$ which satisfies the equation $g(\bar{Y})=0$ and (obviously) the state equation $\partial_{t} \bar{Y}+A(\bar{Y}) \partial_{x} \bar{Y}=g(\bar{Y})$

Road traffic $\rho=$ density
$v=$ velocity

Open channels $h=$ water depth $v=$ velocity

Steady state

$$
\bar{v}=\sqrt{\frac{g S}{C} \bar{h}}
$$

(Toricelli formula)

Characteristic form

- Hyperbolic system : $\partial_{t} Y+A(Y) \partial_{x} Y=g(Y)$
- Change of coordinates:

$$
\begin{array}{cc}
\xi(Y)=\binom{\xi_{1}}{\xi_{2}} & \partial_{t} \xi+\left(\begin{array}{cc}
c_{1}(\xi) & 0 \\
0 & c_{2}(\xi)
\end{array}\right) \partial_{x} \xi=h(\xi) \\
\begin{array}{c}
\text { (Riemann } \\
\text { coordinates) }
\end{array} & \begin{array}{l}
\text { with } c_{1}(\xi) \neq c_{2}(\xi) \\
\text { eigenvalues of } A(Y)
\end{array} \\
\text { (Characteristic } \\
\text { velocities) }
\end{array}
$$

The change of coordinates $\xi(Y)$ is defined up to a constant. It can therefore be selected such that $\xi(\bar{Y})=0 \Rightarrow h(0)=0$.

Physical netwoks of 2×2 hyperbolic systems

(e.g. hydraulic networks (irrigation, waterways) or road traffic networks)

- directed graph
- n edges
- one 2×2 hyperbolic system of balance laws attached to each arc

$$
\partial_{t}\binom{\xi_{i}}{\xi_{n+i}}+\left(\begin{array}{cc}
c_{i}(\xi) & 0 \\
0 & c_{n+i}(\xi)
\end{array}\right) \partial_{x}\binom{\xi_{i}}{\xi_{n+i}}=h\binom{\xi_{i}}{\xi_{n+i}} \quad(i=1, \ldots, n)
$$

Characteristic form

$$
\partial_{t} \xi+C(\xi) \partial_{x} \xi=h(\xi)
$$

(characteristic velocities) $\quad c_{i}(\xi)>0 \quad i=1, \ldots, n$
$C(\xi)=\operatorname{diag}\left(c_{1}(\xi), \ldots, c_{2 n}(\xi)\right) \quad c_{i}(\xi)<0 \quad i=n+1, \ldots, 2 n$

Notations $\xi_{+}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$

$$
\xi_{-}=\left(\xi_{n+1}, \ldots, \xi_{2 n}\right)
$$

$$
x \in[0, L]
$$

Boundary conditions

$$
\binom{\xi_{+}(t, 0)}{\xi_{-}(t, L)}=G\binom{\xi_{+}(t, L)}{\xi_{-}(t, 0)}
$$

Boundary conditions $=$ Physical constraints

$$
\left(\begin{array}{l}
\binom{\xi_{+}(t, 0)}{\xi_{-}(t, L)}=G\binom{\xi_{+}(t, L)}{\xi_{-}(t, 0)} \Longleftrightarrow F(Y(t, 0), Y(t, L))=0
\end{array}\right.
$$

Flow conservation at a junction

$$
\begin{aligned}
& \rho_{3}(t, 0) v_{3}(t, 0)= \\
& \rho_{1}(t, L) v_{1}(t, L)+\rho_{2}(t, L) v_{2}(t, L)
\end{aligned}
$$

Open channels $\quad h=$ water depth $v=$ velocity

Modelling of hydraulic gates
$h_{2}(t, 0) v_{2}(t, 0)=\alpha\left(h_{1}(t, L)-u\right)^{3 / 2}$

Boundary conditions = boundary feedback control

Road traffic

$$
\begin{aligned}
& \rho=\text { density } \\
& v=\text { velocity } \\
& q=\rho v=\text { flux }
\end{aligned}
$$

Feedback implementation of ramp metering

$$
\begin{array}{ll}
\text { Open channels } & h=\text { water depth } \\
& v=\text { velocity }
\end{array}
$$

Feedback control of water depth in navigable rivers
G function of the control tuning parameters: How to design the control laws to make the boundary conditions stabilizing ?

$$
\begin{gathered}
t \in[0,+\infty) \quad x \in[0, L] \\
\partial_{t} \xi+C(\xi) \partial_{x} \xi=h(\xi) \\
\binom{\xi_{+}(t, 0)}{\xi_{-}(t, L)}=G\binom{\xi_{+}(t, L)}{\xi_{-}(t, 0)} \\
\xi(0, x)=\xi_{0}(x)
\end{gathered}
$$

Conditions on C, h and G
such that $\xi=0$ is exponentially stable?

$$
\begin{gathered}
t \in[0,+\infty) \quad x \in[0, L] \\
\partial_{t} \xi+C(\xi) \partial_{x} \xi=h(\xi) \\
\binom{\xi_{+}(t, 0)}{\xi_{-}(t, L)}=G\binom{\xi_{+}(t, L)}{\xi_{-}(t, 0)} \\
\xi(0, x)=\xi_{0}(x)
\end{gathered}
$$

Conditions on C, h and G such that $\xi=0$ is exponentially stable?

In a linear space χ of functions from $[0, L]$ into $\mathbb{R}^{2 n}$
Definition of exponential stability for the norm \| $\|_{\chi}$
$\exists \varepsilon, \gamma, \nu$ such that solutions are defined $\forall t \in[0,+\infty)$ and

$$
\left\|\xi_{0}\right\|_{\chi} \leqslant \varepsilon \Rightarrow\|\xi(t, .)\|_{\chi} \leqslant \gamma e^{-\nu t}\left\|\xi_{0}\right\|_{\chi}
$$

(+ usual compatibility conditions adapted to χ)

Lyapunov stability : we start with the linear case

$$
\text { System } \quad \partial_{t} \xi+\Lambda \partial_{x} \xi=B \xi \quad \Lambda=\operatorname{diag}\left\{\lambda_{i}>0\right\}
$$

Boundary condition $\quad \xi(t, 0)=K \xi(t, L)$
Lyapunov function $\quad V=\int_{0}^{L} \begin{array}{r}\xi^{T}(t, x) P \xi(t, x) e^{-\mu x} d x \\ \mu>0 \quad P=\operatorname{diag}\left\{p_{i}>0\right\}\end{array}$

$$
\begin{aligned}
\dot{V}= & -\int_{0}^{L} \xi(t, x)\left(\mu P \Lambda-\left[B^{T} P+P B\right]\right) \xi(t, x) e^{-\mu x} d x \\
& -\xi^{T}(t, L)\left[P \Lambda e^{-\mu L}-K^{T} P \Lambda K\right] \xi(t, L)
\end{aligned}
$$

System

 Lyapunov function$$
\begin{array}{lr}
\partial_{t} \xi+\Lambda \partial_{x} \xi=B \xi & V=\int_{0}^{L} \xi^{T}(t, x) P \xi(t, x) e^{-\mu x} d x \\
\xi(t, 0)=K \xi(t, L) & \dot{V}=-\int_{0}^{L} \xi(t, x)\left(\mu P \Lambda-\left[B^{T} P+P B\right]\right) \xi(t, x) e^{-\mu x} d x \\
\xi(0, x)=\xi_{0}(x) & \\
& -\xi^{T}(t, L)\left[P \Lambda e^{-\mu L}-K^{T} P \Lambda K\right] \xi(t, L)
\end{array}
$$

If $\exists P$ (diag. pos.) and $\mu>0$ such that:

1) $\mu P \Lambda-\left[B^{T} P+P B\right] \succ 0$
2) $P \Lambda e^{-\mu L}-K^{T} P \Lambda K \succ 0$

Then $\exists \delta>0$ s.t. $\dot{V} \leqslant-\delta V \quad \Rightarrow \quad$ exponential stability
for L^{2}-norm

Let us now consider the nonlinear case

$$
\text { System } \quad \partial_{t} \xi+C(\xi) \partial_{x} \xi=h(\xi) \quad c_{i}(\xi)>0
$$

Boundary condition $\quad \xi(t, 0)=G(\xi(t, L))$

Notations: $\quad \Lambda=C(0), \quad B=h^{\prime}(0), \quad K=G^{\prime}(0)$

If $\exists P$ (diag. pos.) and $\mu>0$ such that:

$$
\begin{aligned}
& \text { 1) } \mu P \Lambda-\left[B^{T} P+P B\right] \succ 0 \\
& \text { 2) } P \Lambda e^{-\mu L}-K^{T} P \Lambda K \succ 0
\end{aligned}
$$

then the steady-state $\xi \equiv 0$ is exponentially stable for the H^{2}-norm !

Let us now consider the nonlinear case

$$
\text { System } \quad \partial_{t} \xi+C(\xi) \partial_{x} \xi=h(\xi) \quad c_{i}(\xi)>0
$$

Boundary condition $\quad \xi(t, 0)=G(\xi(t, L))$

Notations: $\quad \Lambda=C(0), \quad B=h^{\prime}(0), \quad K=G^{\prime}(0)$

If $\exists P$ (diag. pos.) and $\mu>0$ such that:

$$
\begin{aligned}
& \text { 1) } \mu P \Lambda-\left[B^{T} P+P B\right] \succ 0 \\
& \text { 2) } P \Lambda e^{-\mu L}-K^{T} P \Lambda K \succ 0
\end{aligned}
$$

then the steady-state $\xi \equiv 0$ is exponentially stable for the H^{2}-norm !

Special case: a more explicit stability condition

$$
\begin{gathered}
\partial_{t} \xi+C(\xi) \partial_{x} \xi=h(\xi) \quad \xi(t, 0)=G(\xi(t, L)) \\
\Lambda=C(0), \quad B=h^{\prime}(0), \quad K=G^{\prime}(0)
\end{gathered}
$$

Theorem

$$
\begin{aligned}
& \text { If } B=0 \text {, or if }\|B\| \text { sufficiently small, } \\
& \text { then } \xi \equiv 0 \text { is exponentially stable for } H^{2} \text {-norm if } \\
& \begin{array}{l}
\rho_{2}(K)<1 \\
\quad \rho_{2}(K)=\min _{\Delta}\left(\left\|\Delta K \Delta^{-1}\right\|, \Delta\right. \text { positive diagonal) } \\
\text { (boundary damping) } \\
\xi(t, 0)=K \xi(t, L)
\end{array}
\end{aligned}
$$

Special case: LiTaTsien Condition

$$
\begin{gathered}
\partial_{t} \xi+C(\xi) \partial_{x} \xi=h(\xi) \quad \xi(t, 0)=G(\xi(t, L)) \\
\Lambda=C(0), \quad B=h^{\prime}(0), \quad K=G^{\prime}(0)
\end{gathered}
$$

Theorem
If $B=0$, or if $\|B\|$ sufficiently small, then $\xi \equiv 0$ is exponentially stable for C^{1}-norm if

$$
\rho(|K|)<1 \quad \rho(|K|)=\text { spectral radius of the matrix }\left[\left|K_{i j}\right|\right]
$$

(boundary damping)
$\xi(t, 0)=K \xi(t, L)$
H^{2} / C^{1} exponential stability $\quad \partial_{t} \xi+C(\xi) \partial_{x} \xi=h(\xi)$

$$
\begin{aligned}
& \xi(t, 0)=G(\xi(t, L)) \\
& \Lambda=C(0), \quad B=h^{\prime}(0), \quad K=G^{\prime}(0)
\end{aligned}
$$

For every $K \in \mathcal{M}_{m, m}$

$$
\rho_{2}(K) \leqslant \rho(|K|)
$$

Example: for $K=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right), \quad \rho_{2}(K)=\sqrt{2}<2=\rho(|K|)$
(B-C chapter 4 + Appendix)

For the C^{1}-norms, the condition $\rho(|K|)<1$ is sufficient for the stability the condition $\rho_{2}(K)<1$ is not sufficient
H^{2} / C^{1} exponential stability $\quad \partial_{t} \xi+C(\xi) \partial_{x} \xi=h(\xi)$

$$
\begin{aligned}
& \xi(t, 0)=G(\xi(t, L)) \\
& \Lambda=C(0), \quad B=h^{\prime}(0), \quad K=G^{\prime}(0)
\end{aligned}
$$

For every $K \in \mathcal{M}_{m, m}$

$$
\rho_{2}(K) \leqslant \rho(|K|)
$$

Example: for $K=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right), \quad \rho_{2}(K)=\sqrt{2}<2=\rho(|K|)$
(B-C chapter 4 + Appendix)

For the C^{1}-norms, the condition $\rho(|K|)<1$ is sufficient for the stability the condition $\rho_{2}(K)<1$ is not sufficient

There are boundary conditions that are sufficiently damping for the H^{2}-norm but not for the C^{1}-norm!

Another special case

$$
\begin{gathered}
\partial_{t} \xi+C(\xi) \partial_{x} \xi=h(\xi) \quad \xi(t, 0)=G(\xi(t, L)) \\
\Lambda=C(0), \quad B=h^{\prime}(0), \quad K=G^{\prime}(0)
\end{gathered}
$$

If $\exists P$ (diag. pos.) such that:

$$
\begin{aligned}
& \text { 1) } B^{T} P+P B \preccurlyeq 0 \quad \text { (e.g. dissipative friction term) } \\
& \text { 2) } \rho_{2}(K)=\left(\left\|\Delta K \Delta^{-1}\right\|<1 \text { with } \Delta^{2}=P \Lambda \quad\right. \text { (boundary damping) }
\end{aligned}
$$

The stability conditions hold also, with appropriate modifications, for systems with positive and negative characteristic velocities $c_{i}(\xi)$, as we shall see in the example.

Example: Boundary control for a channel with multiple pools

Meuse river (Belgium)

Real-life application : level control in navigable rivers. Meuse river (Belgium).

Model : Saint-Venant equations

$\partial_{t}\binom{H_{i}}{V_{i}}+\partial_{x}\binom{H_{i} V_{i}}{\frac{1}{2} V_{i}^{2}+g H_{i}}=\binom{0}{g\left[S_{i}-C_{i} V_{i}^{2} H_{i}^{-1}\right]}, \quad i=1 \ldots, n$.
slope friction

$$
(\text { width }=W)
$$

Boundary conditions

1) Conservation of flows $\quad H_{i}(t, L) V_{i}(t, L)=H_{i+1}(t, 0) V_{i+1}(t, 0) \quad i=1, \ldots, n-1$
2) Gate models $\quad H_{i}(t, L) V_{i}(t, L)=k_{G} \sqrt{\left[H_{i}(t, L)-u_{i}(t)\right]^{3}} \quad i=1, \ldots, n$
3) Input flow $W H_{1}(t, 0) V_{1}(t, 0)=Q_{0}(t)=$ disturbance input in navigable rivers or control input in irrigation networks

Boundary control design

$$
\left(H_{i}^{*}, V_{i}^{*}\right)=\text { steady-state }
$$

Riemann coordinates

$\xi_{i}=\left(V_{i}-V_{i}^{*}\right)+\left(H_{i}-H_{i}^{*}\right) \sqrt{\frac{g}{H_{i}^{*}}} \quad \xi_{n+i}=\left(V_{i}-V_{i}^{*}\right)-\left(H_{i}-H_{i}^{*}\right) \sqrt{\frac{g}{H_{i}^{*}}} \quad i=1, \ldots, n$.

Control objective $\quad \xi_{n+i}(t, L)=-k_{i} \xi_{i}(t, L) \quad i=1, \ldots, n$
$k_{i}=$ control tuning parameters

Gate model $\quad H_{i}(t, L) V_{i}(t, L)=k_{G} \sqrt{\left[H_{i}(t, L)-u_{i}(t)\right]^{3}} \quad i=1, \ldots, n$

$$
H_{i}^{*}=\text { level set points }
$$

Control law
$u_{i}(t)=H_{i}(t, L)-\left[\frac{H_{i}(t, L)}{k_{G}}\left(\frac{1-k_{i}}{1+k_{i}}\left(H_{i}(t, L)-H_{i}^{*}\right) \sqrt{\frac{g}{H_{i}^{*}}}+\sqrt{\frac{S_{i} H_{i}^{*}}{C}}\right)\right]^{2 / 3} \quad i=1, \ldots, n$

Linearized Saint-Venant equations in Riemann coordinates

$$
\begin{gathered}
i=1, \ldots, n \\
\partial_{t}\binom{\xi_{i}}{\xi_{n+i}}+\partial_{x}\left(\begin{array}{cc}
\lambda_{i} & 0 \\
0 & -\lambda_{n+i}
\end{array}\right) \partial_{x}\binom{\xi_{i}}{\xi_{n+i}}=-\left(\begin{array}{cc}
\gamma_{i} & \delta_{i} \\
\gamma_{i} & \delta_{i}
\end{array}\right)\binom{\xi_{i}}{\xi_{n+i}} \\
-\lambda_{n+i}=V_{i}^{*}-\sqrt{g H_{i}^{*}}<0<\lambda_{i}=V_{i}^{*}+\sqrt{g H_{i}^{*}} \quad 0<\lambda_{n+i}<\lambda_{i} \\
0<\gamma_{i}=g S_{i}\left(\frac{1}{V_{i}^{*}}-\frac{1}{2 \sqrt{g H_{i}^{*}}}\right)<\delta_{i}=g S_{i}\left(\frac{1}{V_{i}^{*}}+\frac{1}{2 \sqrt{g H_{i}^{*}}}\right)
\end{gathered}
$$

Lyapunov stability

$\partial_{t}\binom{\xi_{i}}{\xi_{n+i}}+\partial_{x}\left(\begin{array}{cc}\lambda_{i} & 0 \\ 0 & -\lambda_{n+i}\end{array}\right) \partial_{x}\binom{\xi_{i}}{\xi_{n+i}}=-\left(\begin{array}{cc}\gamma_{i} & \delta_{i} \\ \gamma_{i} & \delta_{i}\end{array}\right)\binom{\xi_{i}}{\xi_{n+i}}$
Subcritical flow condition $\Rightarrow \quad 0<\lambda_{n+i}<\lambda_{i} \quad 0<\gamma_{i}<\delta_{i}$
$V=\sum_{i=1}^{n} \int_{0}^{L}\left(p_{i} \xi_{i}^{2} e^{-\mu x}+p_{n+i} \xi_{n+i}^{2} e^{\mu x}\right) d x, \quad p_{i}, p_{n+i}, \mu>0$

If parameters p_{i} selected such that

$$
p_{i} \gamma_{i}=p_{n+i} \delta_{i} \quad p_{i+1}=\varepsilon p_{i}
$$

ε and μ sufficiently small
(dissipative friction)
control tuning parameters k_{i} such that

$$
k_{i}^{2} \frac{\delta_{i} \lambda_{n+i}}{\gamma_{i} \lambda_{i}}<1 \quad \text { (boundary damping) }
$$

Experimental result (Dinant)

16 to 23 october 2012

The nonuniform case : example

Now we consider a pool of a prismatic horizontal open channel with a rectangular cross section and a unit width.
$H(x, t)=$ water depth

$$
\begin{aligned}
& \partial_{t} H+\partial_{x}(H V)=0 \\
& \partial_{t} V+\partial_{x}\left(\frac{V^{2}}{2}+g H\right)+g C \frac{V^{2}}{H}=0
\end{aligned}
$$

Steady-state $H^{*}(x), V^{*}(x)$ for a constant flow rate $Q^{*}=H^{*}(x) V^{*}(x)$

$$
\frac{d V^{*}}{d x}=\frac{g C}{Q^{*}}\left(\frac{\left(V^{*}(x)\right)^{5}}{g Q^{*}-\left(V^{*}(x)\right)^{3}}\right) \quad \begin{aligned}
& \text { Nonuniform } \\
& \text { steady state }
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{t} H+\partial_{x}(H V)=0 \\
& \partial_{t} V+\partial_{x}\left(\frac{V^{2}}{2}+g H\right)+g C \frac{V^{2}}{H}=0
\end{aligned}
$$

Linearization about the steady-state

$$
h(t, x):=H(t, x)-H^{*}(x), \quad v(t, x):=V(t, x)-V^{*}(x)
$$

Linearized model in physical coordinates

$$
\binom{h_{t}}{v_{t}}+\left(\begin{array}{cc}
V^{*} & H^{*} \\
g & V^{*}
\end{array}\right)\binom{h_{x}}{v_{x}}+\left(\begin{array}{cc}
V_{x}^{*} & H_{x}^{*} \\
-g C \frac{V^{* 2}}{H^{*}} & V_{x}^{*}+2 g C \frac{V^{*}}{H^{*}}
\end{array}\right)\binom{h}{v}=0
$$

$$
\binom{h_{t}}{v_{t}}+\left(\begin{array}{cc}
V^{*} & H^{*} \\
g & V^{*}
\end{array}\right)\binom{h_{x}}{v_{x}}+\left(\begin{array}{cc}
V_{x}^{*} & H_{x}^{*} \\
-g C \frac{V^{* 2}}{H^{*}} & V_{x}^{*}+2 g C \frac{V^{*}}{H^{*}}
\end{array}\right)\binom{h}{v}=0
$$

Lyapunov function

$$
\begin{aligned}
& \mathbf{V}=\int_{0}^{L}\left(g h^{2}+H^{*} v^{2}\right) d x=\int_{0}^{L}\left(\begin{array}{ll}
h & v
\end{array}\right)\left(\begin{array}{cc}
g & 0 \\
0 & H^{*}
\end{array}\right)\binom{h}{v} d x \\
& \frac{d \mathbf{V}}{d t}=-\int_{0}^{L}\left(Y^{T} N(x) Y\right) d x-\left[Y^{T} M(x) Y\right]_{0}^{L}
\end{aligned}
$$

$$
\binom{h_{t}}{v_{t}}+\left(\begin{array}{cc}
V^{*} & H^{*} \\
g & V^{*}
\end{array}\right)\binom{h_{x}}{v_{x}}+\left(\begin{array}{cc}
V_{x}^{*} & H_{x}^{*} \\
-g C \frac{V^{* 2}}{H^{*}} & V_{x}^{*}+2 g C \frac{V^{*}}{H^{*}}
\end{array}\right)\binom{h}{v}=0
$$

Subcritical flow (i.e. fluvial): $g H^{*}-V^{* 2}>0$

Lyapunov function

$$
\begin{gathered}
\mathbf{V}=\int_{0}^{L}\left(g h^{2}+H^{*} v^{2}\right) d x=\int_{0}^{L}\left(\begin{array}{ll}
h & v
\end{array}\right)\left(\begin{array}{cc}
g & 0 \\
0 & H^{*}
\end{array}\right)\binom{h}{v} d x \\
\frac{d \mathbf{V}}{d t}=-\int_{0}^{L}\left(Y^{T} N(x) Y\right) d x-\left[Y^{T} M(x) Y\right]_{0}^{L} \\
Y=\binom{h}{v} \quad N(x)=\left(\begin{array}{cc}
\frac{g^{2} C C^{* 3}}{H^{*}\left(g H^{*}-V^{* 2}\right)} & -\frac{g C V^{* 2}}{H^{*}} \\
-\frac{g C V^{* *}}{H^{*}} & \frac{2 g C V^{* *}}{\left(g H^{*}-V^{* 2}\right)}+4 g C V^{*}
\end{array}\right) \quad M(x)=\left(\begin{array}{ll}
g V^{*} & g H^{*} \\
g H^{*} & H^{*} V^{*}
\end{array}\right)
\end{gathered}
$$

positive definite

$$
\binom{h_{t}}{v_{t}}+\left(\begin{array}{cc}
V^{*} & H^{*} \\
g & V^{*}
\end{array}\right)\binom{h_{x}}{v_{x}}+\left(\begin{array}{cc}
V_{x}^{*} & H_{x}^{*} \\
-g C \frac{V^{* 2}}{H^{*}} & V_{x}^{*}+2 g C \frac{V^{*}}{H^{*}}
\end{array}\right)\binom{h}{v}=0
$$

Subcritical flow (i.e. fluvial): $g H^{*}-V^{* 2}>0$

Lyapunov function

$$
\begin{aligned}
& \mathbf{V}=\int_{0}^{L}\left(g h^{2}+H^{*} v^{2}\right) d x=\int_{0}^{L}(h \quad v)\left(\begin{array}{cc}
g & 0 \\
0 & H^{*}
\end{array}\right)\binom{h}{v} d x \\
& \frac{d \mathbf{V}}{d t}=-\int_{0}^{L}\left(Y^{T} N(x) Y\right) d x-\left[Y^{T} M(x) Y\right]_{0}^{L} \quad \begin{array}{r}
\text { boundary } \\
\text { damping } \\
\text { conditions ? }
\end{array} \\
& Y=\binom{h}{v} \quad N(x)=\left(\begin{array}{cc}
\frac{g^{2} C V^{* 3}}{H H^{*}\left(g H^{*}-V^{20}\right)} & -\frac{g C V^{* 2}}{H^{*}} \\
-\frac{g\left(V^{*}\right.}{H^{*}} & \frac{2 g C V^{*}}{\left(g H^{*}-V^{*}\right)}+4 g C V^{*}
\end{array}\right) \quad M(x)=\left(\begin{array}{ll}
g V^{*} \\
g H^{*} \\
H^{*} H^{*}
\end{array}\right)
\end{aligned}
$$

positive definite
disturbance
$Q_{0}(t)$

control $\quad Q_{L}(t)=\underset{\text { feedforward }}{\frac{Q_{0}(t)}{}+\underset{\text { feedback }}{k_{P}\left(H(t, L)-H_{s p}\right)}}$
disturbance
$Q_{0}(t)$

control $Q_{L}(t)=Q_{0}(t)+\underset{\substack{\text { measured } \\ \text { control } \\ \text { tuning }}}{k_{P}\left(H(t, L)-H_{s p}\right)}$

disturbance

$Q_{0}(t)$

control

$$
Q_{L}(t)=Q_{0}(t)+k_{P}\left(H(t, L)-H_{s p}\right)
$$

boundary damping $\quad\left[Y^{T} M(x) Y\right]_{0}^{L}>0$
$\Longrightarrow \frac{V^{*}(0)}{H^{*}(0)}\left(g H^{*}(0)-V^{* 2}(0)\right) h^{2}(t, 0)+\left[\frac{g H^{*}(L)-V^{* 2}(L)}{H^{*}(L)}\left(2 k_{P}-V^{*}(L)\right)+\frac{V^{*}(L)}{H^{*}(L)} k_{P}^{2}\right] h^{2}(t, L)>0$
\Longrightarrow exponential stability if $\left|k_{P}\right|$ is sufficiently large ...
back : closed loop
front: open loop

Thank you!

